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In 17, 81, Shisha and Mond gave a quantitative formulation of some well~

known results of Korovkin [41. In [61, Mond showed how a proof in 171 is
easily modified to yield a more general and often better result. Here we show
how the proofs of Censor II I can be similarly modified to obtain
corresponding generalizations. For simplicity we utilize the notation of II I.

THEOREM. Let A be a positive number. Let L I' L 2 , ... be linear positive
operators on CJ a, b]. Suppose that jLn(l) f~ I is uniformly bounded in [a, b I.
Let fE ell a, b I and let w(f'; .) be the modulus of continuity of1'. ThenJor
n = 1,2,....

where

and

In particular, if Ln(l) = 1, (1) reduces to

II Ln(f) - fll ~ 111'11 Pn + (A I + 1) Pnw(f'; APn)'
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If. in addition, L,,1t; xl == x, we obtain

II L,,(J) - III <(A -, + 1) 11" w(J'; All,,)·
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Note that, if we take A = 1, the theorem reduces to that of Censor Ill.
The proof of the theorem is analogous to that of Theorem 5 of II I except
that, in the appropriate step of the proof, one takes 3 = All" instead of
6 = 11". A number of other results of Censor [11 can similarly be improved
by this change, introducing the arbitrary constant A into the estimate for
L,,(J) - J:I.

EXAMPLE. Let D be the set of all real functions with domain 10. II. For
n = I, 2, .. ., let L" be the linear positive operator with domain D, defined by

Let I be a real function in ella, 11. Let n be a positive integer. Then
L,,(l)== 1, \L,,(t)!(x)==x.

!L,,(t2)I(x)==(n~l)n-Ix2+nlx,(L,,(lt-xI2))(x)=n'(x-x 2
).

Taking A = 2. our theorem gives

max II(x) - LJ(x)1 <0 + 1) 2 In -1/2w (J'; 2/(2n l/2))
0<;.<<;1

Thus, by selecting A = 2, our theorem yields the estimate for the rate of
convergence of Bernstein polynomials of functions in e'lo, II given in
IS, p. 211, whereas in [1-31. as good a result is not achieved.
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